If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=16H^2+50H+6
We move all terms to the left:
-(16H^2+50H+6)=0
We get rid of parentheses
-16H^2-50H-6=0
a = -16; b = -50; c = -6;
Δ = b2-4ac
Δ = -502-4·(-16)·(-6)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-46}{2*-16}=\frac{4}{-32} =-1/8 $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+46}{2*-16}=\frac{96}{-32} =-3 $
| (3x-2)+x=18 | | -6r+2r=3-3r | | 5x=5100 | | -3-4b=5-2b | | 5*x=5100 | | 18.5w+6.5w-28w=149.1 | | 23+3(1x-2)=-4 | | 5+n=2 | | -1*2x+1/2x=0 | | -0.06+7.6p=-127.74 | | 5x-13=15x+7 | | 14/2-10/5=5j | | 42+3y=87 | | 5x-16=(8-x)^2 | | 200-16d=412 | | 2.5(2/3m+10)=4/5 | | 36=3(x=6) | | (n+1)÷5=3 | | −3+3y=14 | | 8x(-4)=23 | | 3x2+4x=16 | | 45=6/x | | 2y^2(4-2)=16 | | 7x²+21x−28=0 | | 9a+9=117 | | 0.821=-6.7=p/8.4 | | (3w+7)w=66 | | -15.5v=-193.72 | | y+5=8+5 | | 3a+a=0 | | 4(-b+5)-8b=40-7b | | 4k+7=7 |